

CO - doping effects on SrWO₄: Nd³⁺ crystals for Raman lasers

A. ACHIM*, L. GHEORGHE, V. LUPEI, A. LUPEI, C. GHEORGHE, C. STOICESCU

National Institute for Laser, Plasma and Radiation Physics, Solid State Quantum Electronics Laboratory, 077125, Bucharest, Romania

The strontium tungstate (SrWO₄) crystals doped with laser active RE³⁺ (rare earths) ions can act as multifunctional systems, combining the laser and Raman scattering properties. To bring some insight in the charge compensation mechanisms connected with substitution of the Sr²⁺ host cations with RE³⁺, the high-resolution optical spectra at low temperatures on Nd: SrWO₄ single doped crystals and co-doped with Nb⁵⁺ or Na⁺ ions were performed. The crystal growth conditions and structural results are presented too. The high-resolution optical absorption data at 15 K reveal a multicenter structure (up to five centers). A comparative analysis of the Nd³⁺ spectra in single doped or in (Nd, Na) and (Nd, Nb) co-doped SrWO₄ crystals is presented.

(Received March 26, 2008; accepted June 4, 2008)

Keywords: Tungstates, SrWO₄ crystals, Czochralski, X-ray diffraction, Nd³⁺ spectroscopy

1. Introduction

The necessity of lasers with emission in new spectral wavelengths has extended the search for different materials and generation processes, such as stimulated Raman scattering (SRS). Among the crystals with good nonlinear properties for crystalline nano and picoseconds Raman lasers are the tungstates (CaWO₄, BaWO₄, SrWO₄) [1-5]. The investigations on undoped crystals were directed to obtain crystals of good optical quality and to determine the characteristics of stimulated Raman scattering process.

The tungstates crystals doped with Nd³⁺ are investigated as multifunctional systems combining the laser and non-linear properties [3-6] or doped with other RE³⁺ ions (Er³⁺, Tm³⁺, Yb³⁺) as laser materials [7 - 10]. SrWO₄ crystals belong to the uniaxial tetragonal scheelite structure [11] with a space group of $I4_1/a$ (C_{4h}^6) having the cell parameters $a = b = 5.417 \text{ \AA}$ and $c = 11.951 \text{ \AA}$. The scheelite elementary cell contains four SrWO₄ units. The RE³⁺ ions replace Sr²⁺ in sites with eightfold oxygen coordination (distorted dodecahedron, point symmetry S₄) [12]. The excess of charge could be compensated by cation vacancies, interstitial oxygen, pairing of Nd³⁺ ions, etc. and by co-doping with Na⁺ (replacing Sr²⁺) or Nb⁵⁺ (replacing W⁶⁺) ions [13].

The charge compensation leads generally to multicenter spectral structures. The changes of spectral (optical or EPR) characteristics especially the apparition of a variety of spectra, connected with charge compensation mechanisms function on RE³⁺ ion, sample preparation, doping or co-doping level have been observed [13]. However, no reliable characterization of the charge compensation mechanisms has been given even in the recent publications [6-10]. The purpose of this paper is to investigate the crystal growth conditions, structure and preliminary high-resolution spectral characteristics of

SrWO₄ single crystals doped with Nd³⁺ and co-doped with Nb⁵⁺ or Na⁺ ions.

2. Results

2.1 Samples preparation

The starting material SrWO₄ was synthesized by solid-state reaction of SrCO₃ and WO₃ in stoichiometric ratios. The dopants were added in forms of Nd₂(WO₄)₃ (starting from Nd₂O₃, HNO₃ and Na₂WO₄), NdNbO₄ (starting from Nd₂O₃ and Nb₂O₅), and Nd₂O₃ + Na₂CO₃. The raw materials were completely mixed in a Pt crucible and sintered in oxygen atmosphere at 1350 °C for 24 hours. X - ray diffraction patterns, performed on the powders of the synthesized samples, proved that the solid-state reactions were completed and that no other parasitic phases are present. Single crystals of SrWO₄ doped with Nd³⁺ ions between 0.3 and 3.0 at.%, or co-doped (0.6 at.% Nd, 0.6 at.% Na) and (0.6 at.% Nd, 0.6 at.% Nb) were grown from the melt by Czochralski method with induction heating, without any excess of WO₃ into the melt. The doping concentrations refer to the melt composition. The melting point is 1535 ± 20 °C, so it was possible to use platinum crucibles (internal diameter of 35 mm and height of 35 mm) in the 3% O₂ + 97% N₂ atmosphere. From the first SrWO₄: Nd crystal obtained by crystallization on the Pt wire, seeds of [001] orientations were cut and further crystal growths were carried out using crystalline seeds oriented parallel to the c-axis. The temperature was initially maintained for 2 - 3 hours 50 - 60 °C higher than the melting point of crystals (measured with an infrared pyrometer to assure complete melting and homogenization then it was lowered to the melting temperature. The seeds were necked down before they were tapered off to a diameter of about 2 mm. The decreasing of the temperature gradient just above the melt at about 30 - 40 °C/cm allow to obtain single crystals of

[001] orientation free of blocks. To obtain crystals with good optical quality, the pulling rate must not exceed 1.5 mm/h. With substantial increase of dopants concentration (Nd^{3+} , Na^+ or Nb^{5+}) the pulling rate has to be decreased to 0.8 mm/h. The rotation rates were between 25 and 30 rpm. The crystals were cooled to room temperature at a rate of 30 °C/h. Crystals of good optical quality and sizes of 12 mm in diameter and 20 mm long were grown (Fig. 1).

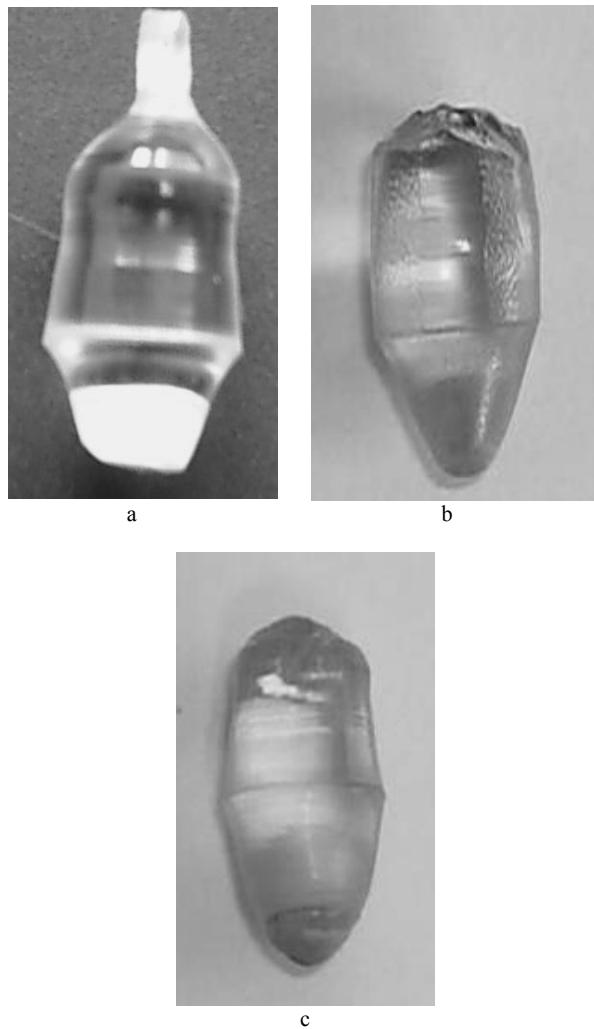


Fig. 1. Single crystals of (a) SrWO_4 : Nd(0.6 at.%) (b) SrWO_4 : Nd(0.6 at.%) Na(0.6 at.%) and (c) SrWO_4 : Nd(0.6 at.%) Nb(1.0 at.%).

Phase identification and determination of lattice parameters of the grown crystals were performed using a TUR M62 diffractometer with $\text{Co K}_{\alpha 1}$ radiation ($\lambda = 1.78897 \text{ \AA}$). The recorded X-ray powder diffraction pattern of the SrWO_4 : Nd (0.6 at.%) grown crystal is reproduced in Fig. 2.

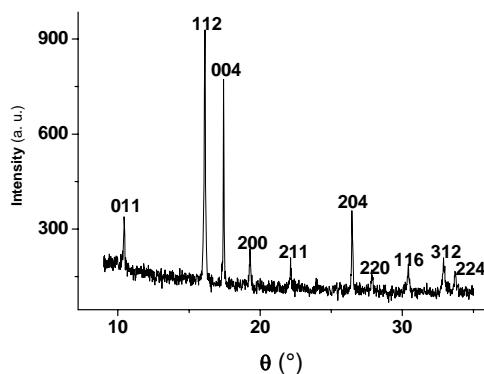


Fig. 2. X-ray powder diffraction pattern of the SrWO_4 : Nd(0.6 at.%) grown crystal.

The pattern matches very well with the data reported for the SrWO_4 phase in literature [14].

The X-ray powder diffraction patterns of grown crystals confirm the presence of single phases of SrWO_4 : Nd, SrWO_4 : (Nd, Na) and SrWO_4 : (Nd, Nb) respectively, and show that the unit cell parameters decrease slightly with the increasing Nd^{3+} and Na^+ concentration. This is determined by the difference between the ionic radii of the Nd^{3+} and Na^+ cations (1.04 Å and 0.97 Å) that substitute the much larger Sr^{2+} (1.12 Å) cations. The influence of Nb^{5+} ions on the unit cell parameters is very small as a consequence of the very closed ionic radii of W^{6+} and Nb^{5+} (0.62 Å and 0.69 Å respectively).

2.2 Spectroscopic data and discussion

The spectral investigations on oriented crystalline samples include high-resolution absorption, emission at 15 K and 300 K. An experimental set-up containing a tungsten halogen lamp, a GDM (0.3 cm^{-1} resolution) monochromator and a photon counting system in connection with a MCS multichannel analyzer for detection and a closed cycle He cryostat (for low temperatures) was used.

In the case of SrWO_4 : Nd single doped crystals, the high-resolution spectra (taken with unpolarized light along c axis) show a complex multicenter structure. At least five lines of different intensities (separated by up to 25 cm^{-1}) are observed, as illustrated in Fig. 3 with the $^4\text{I}_{9/2} \rightarrow ^2\text{P}_{1/2}$ absorption at 15 K for a sample with 0.6 at. % Nd in the melt. In this transition a single line is expected for each center. A similar structure is observed in other transitions too such as for the absorption to the first Stark level of the $^4\text{F}_{5/2}$ manifold (Fig. 4). Obviously, this situation is determined by the compensation of electric charge difference between the doping Nd^{3+} ions and the host cations (Sr^{2+}) and indicates that different charge compensation are accomplished by lattice defects, such as cation vacancies, near the doping ion, by formation of doping ion clusters, other defects or impurities.

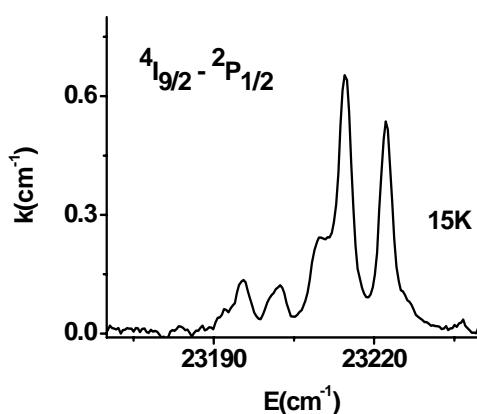


Fig. 3. The $^4I_{9/2} \rightarrow ^2P_{1/2}$ absorption of 0.6 at. % Nd: SrWO₄ at 15 K.

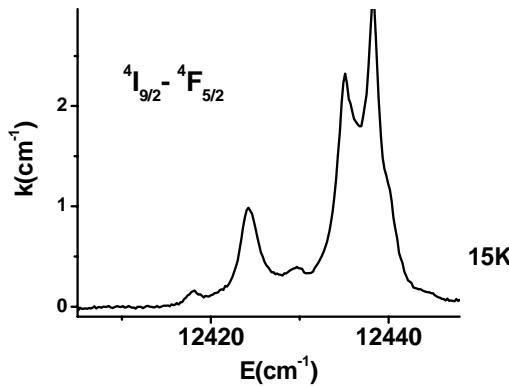


Fig. 4. The $^4I_{9/2} \rightarrow ^4F_{5/2}$ absorption of 0.6 at. % Nd: SrWO₄ at 15 K.

In order to observe the effects of co-doping on the spectroscopic properties, the high-resolution absorption spectra were recorded, in the same conditions, for crystalline samples co-doped with Na⁺ and Nb⁵⁺. The absorption spectra corresponding to Nd³⁺ $^4I_{9/2} \rightarrow ^4F_{3/2}$ and $^4I_{9/2} \rightarrow ^4F_{5/2}$, transitions of interest for diode laser pumping in SrWO₄ crystals doped either with 0.6 at.% Nd, (0.6 at.% Nd, 0.6 at.% Na), or (0.6 at.% Nd, 0.6 at.% Nb) (concentrations in melt) are comparatively illustrated in Fig. 5 and 6. As observed, the spectra are slightly different, the relative intensity of different centers lines change, or other lines -centers appear. Co-doping with Na⁺ leads to a simplification of the spectra, as illustrated in the transitions to the first Stark of the $^4F_{3/2}$ (Fig. 5) or $^4F_{5/2}$ (Fig. 6) that show one prevailing center.

From electric charge and size considerations, the Na⁺ ions will substitute Sr²⁺, while the small Nb⁵⁺ ions could substitute W⁶⁺; thus co-doping with these ions could reduce the need for charge compensation of Nd³⁺ by Sr²⁺ vacancies. The charge compensation with these ions in the vicinity of the Nd³⁺ ion determines different crystal field perturbations at the Nd³⁺ site and this leads to the modification of the multicenter structure or to

inhomogeneous broadening of the optical spectra (or EPR). This structure cannot be observed at the room temperature or in the low resolution optical spectra of RE³⁺ ions [6-10]. Thus, an envelope of our high resolution spectra (Fig. 3) gives a similar width to that reported (~ 25 cm⁻¹) for $^4I_{9/2} \rightarrow ^2P_{1/2}$ absorption of Nd: SrWO₄ grown by flux technique [6]. Our spectra suggest that the co-doping with Na⁺ is appropriate for increasing the intensity of one center. In our study a 1:1 ratio Nd: Na in the raw material was used. However, taking into account the ionic radii differences, a higher quantity of Na⁺ relatively to Nd³⁺ could probably simplify even more the spectra. This is important since the laser emission at more wavelengths is possible in a multicenter system. Obviously, the placement of the Na⁺ or Nb⁵⁺ ions at the available lattice sites is correlated with the distribution of the Nd³⁺ in crystals and it depends also on crystal growth conditions, such as the thermal regime and crystal growth speed.

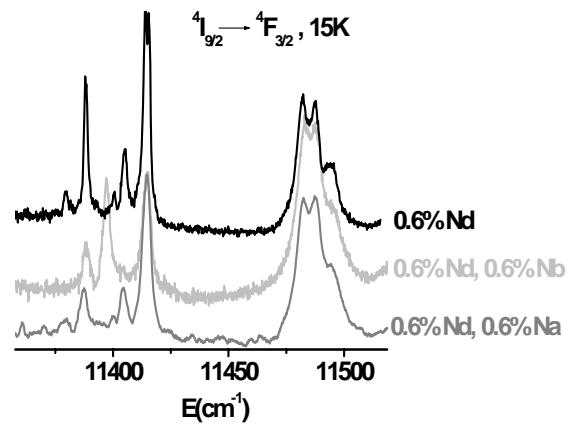


Fig. 5. The 15 K Nd³⁺ $^4I_{9/2} \rightarrow ^4F_{3/2}$ absorption spectra.

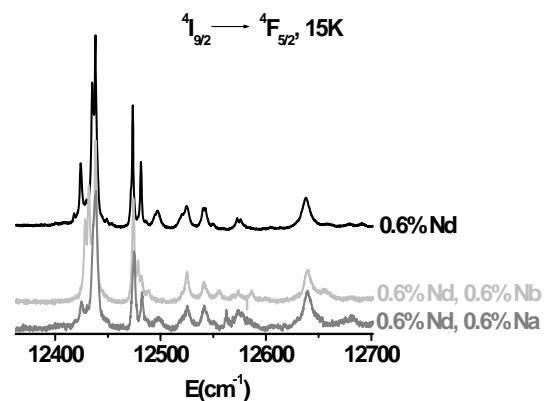


Fig. 6. The 15 K Nd³⁺ $^4I_{9/2} \rightarrow ^4F_{5/2}$ absorption spectra.

4. Conclusion

Single crystals of SrWO₄: Nd³⁺ (with different Nd³⁺ concentrations), or co-doped SrWO₄: Nd(0.6 at.%), Na(0.6

at.%) and SrWO_4 : Nd(0.6 at.%), Nb(1.0 at.%) with constant diameter of 12 mm and 20 mm long having no polycrystalline or crust regions, and good transparency were grown by the Czochralski pulling technique.

Preliminary high-resolution spectral data of SrWO_4 crystals single doped with Nd^{3+} and co-doped samples were performed and show composition-dependent multicenter spectral structures. Selective excited emission or decays measurements on these centers are in progress.

References

- [1] T. T. Basiev, A. A. Sobol, P. G. Zverov, V. V. Osiko, R. C. Powell, *Appl. Opt.* **38**, 594 (1999).
- [2] T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, V. V. Osiko, et al, *Quantum Electronics* **36**, 720 (2006).
- [3] A. I. Vodchits, V. A. Orlovich, P. A. Apanasievich, T. T. Basiev, P. G. Zverev, *Optical Mat.* **29**, 1616 (2007).
- [4] J. Sulc, H. Jeli'nkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, P. G. Zverev, *Optical Mat.* **30**, 195 (2007).
- [5] L. I. Ivleva, I. S. Voronina, P. A. Lykov, L.Yu. Berezovskaya, V. V. Osiko, *J. Crystal Growth* **304**, 108 (2007).
- [6] F. Cornacchia, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, N. Magnani, *J. Phys. Cond. Matter* **16**, 6867 (2004).
- [7] G. Jia, C. Tu, Z. You, J. Li, Z. Zhu, B. Wu, *Solid State Comm.* **134**, 583 (2005).
- [8] G. Jia, C. Tu, J. Li, X. Lu, Z. You, Z. Zhu, B. Wu, *J. Appl. Phys.* **98**, 093525 (2005).
- [9] G. Jia, C. Tu, J. Li, Z. Zhu, Z. You, Y. Wang, B. Wu, *J. Alloys and Comp.* **436**, 341 (2007).
- [10] F. Cornacchia, A. Toncelli, M. Tonelli, K. A. Subbotin, V. A. Smirnov, D. A. Lis, E. V. Zharkov, *J. Appl. Phys.* **101**, 123113 (2007).
- [11] E. Gurmen, E. Daniels, J. S. King, *J. Chem. Phys.* **55**, 1093 (1971).
- [12] J. P. Satler, J. Nemerich, *Phys. Rev. B* **1**, 4249 (1970).
- [13] L. F. Johnson, *J. Appl. Phys.* **34**, 4 (1963).
- [14] J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, *J. Appl. Phys.* **100**, 063513 (2006).

^{*}Corresponding author: achim@inflpr.ro